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Abstract

We introduce g LM-LEXICON, an innova-
tive definition modeling approach that incor-
porates data clustering, semantic expert learn-
ing, and model merging using a sparse mixture-
of-experts architecture. By decomposing the
definition modeling task into specialized se-
mantic domains, where small language mod-
els are trained as domain experts, q LM-
LEXICON achieves substantial improvements
(+7% BLEU score compared with the prior
state-of-the-art model) over existing methods
on five widely used benchmarks. Empirically,
we demonstrate that 1) the clustering strategy
enables fine-grained expert specialization with
nearly 10% improvement in definition qual-
ity; 2) the semantic-aware domain-level rout-
ing mechanism achieves higher expert efficacy
(+1%) than conventional token-level routing;
and 3) further performance gains can be ob-
tained through test-time compute and seman-
tic expert scaling. Our work advances defini-
tion modeling while providing insights into the
development of efficient language models for
semantic-intensive applications.

1 Introduction

Defining terms (Fig. 1) is the first step toward build-
ing a lexicon for a language (Pustejovsky and Bogu-
raev, 1993). Precise definitions should be formed
as summarized and human-readable sentences that
capture the main sense of a term. Modern language
use demands continuous updates to include new
terms, novel senses, meaning shifts, and domain
knowledge (Hogeweg and Vicente, 2020), yet tradi-
tional lexicon construction remains labor-intensive
(Ahlswede, 1985). To address this challenge, def-
inition modeling (DM) has emerged as a promis-
ing approach, where definitions are automatically
generated based on the target term and its context
(Giulianelli et al., 2023, inter alia).
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7) Space Needle 7) Julie Delpy

Julie Delpy Explains Before
Midnight, Feminism, ...

The Space Needle is not used
for broadcasting purposes.

French-American actress,
known for “Before” trilogy.

A prominent Seattle landmark,
an iconic observation tower.

<) Stratosphere ) Genderqueer

The stratosphere is composed
of stratified temperature zones.

A Stable, clear atmospheric
layer ideal for aircraft.

“Genderqueer”, along with
being an umbrella term, ...

Anyone whose gender identity
isn't strictly male or female.

Figure 1: Four examples of the term, context (input),
and definition (output) for definition modeling task.

While existing DM approaches yield reasonable
results, they face several key limitations. First, cur-
rent methods struggle to capture subtle and rare
word senses, resulting in incomplete semantic cov-
erage (Huang et al., 2021; Giulianelli et al., 2023;
Periti et al., 2024). Second, even frontier large
language models (LLMs), despite their strong lan-
guage understanding capabilities, tend to generate
definitions that are either overly generic or exces-
sively specific (Jhirad et al., 2023; Yin and Skiena,
2023; Almeman et al., 2024). Third, existing meth-
ods often fail to handle terms that exhibit different
meanings across domains (e.g., technical vs. gen-
eral usage), a phenomenon known as semantic het-
erogeneity (Huang et al., 2021). Recent attempts
to address this limitation through domain adap-
tation (Zhang et al., 2022) or multi-task learning
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(Kong et al., 2022) have shown limited success.
These challenges point to a fundamental limita-
tion in current dense language models: their ar-
chitecture forces much semantic representation to
share the same neurons (i.e., superposition) (EI-
hage et al., 2022), making it difficult to maintain
precise, domain-specific meaning representations
(Bricken et al., 2023). This architectural constraint
affects their ability to generate accurate definitions
when words have distinct meanings across different
domains.

To mitigate these issues, we propose ' q LM-
LEXICON (Language Model as Lexicon), which
learns to perform DM covering multiple domains,
adapting diverse definition genres with a scalable
mixture-of-experts (MoE) architecture. Unlike
prior work, such as BTX (Sukhbaatar et al., 2024)
and LLAMA-MOE (Zhu et al., 2024), our method
incorporates data clustering, semantic expert-
specialized MoE, and domain-level sequence
routing, obtaining significant performance gains
in DM benchmarks. As depicted in Figure 2, in-
stead of training directly on raw definition corpora,
our method trains multiple semantic experts paral-
lely, merges them by composing their specialized
weights, and routes test samples with the intro-
duced semantic-aware router for inference.

Our contributions can be summarized as follows:

* We propose | q LM-LEXICON, a framework
for definition modeling by harmonizing in-
herent heterogeneity in lexical semantics. It
allows specialized semantic experts to be inte-
grated for domain updates, enabling general-
ization to new domains, or collapsing back to
a single expert for efficient inference.

* We design a domain-level sequence routing
policy in 'q LM-LEXICON. This method
routes representation of samples informed
by fine-grained information via semantic do-
mains identified with pre-hoc auto clustering.

» Extensive experiments across five benchmarks
validate the effectiveness of LM-LEXICON.
Notably, in automatic evaluation, 'q LM-
LEXICON shows up to 10% improvement
over strong baselines. Furthermore, "'q LM-
LEXICON excels across most criteria in hu-
man evaluation, particularly outperforming
frontier LLMs in semantic-intensive scenarios,
where even many-shot setups fail to produce
appropriate definitions.

2 Related Work

Upcycling to Mixture-of-Experts. On the aspect
of model efficiency and expressiveness, Fedus et al.
(2022); Jiang et al. (2024); Shao et al. (2024) focus
on designing efficient MoE architecture with token-
level router. From the expert specialization aspect,
Li et al. (2022) introduced Branch-Train-Merge
(BTM) that learns expert LMs specialized to differ-
ent domains and Sukhbaatar et al. (2024) developed
Branch-Train-MiX (BTX), which composes a set
of specialized LMs by their feed-forward networks.
In addition, Zoph et al. (2022); Jiang et al. (2024);
Petridis et al. (2024) revealed the efficacy of expert
specialization at the lexicon, structured syntactic,
and semantic domain level, respectively. However,
these works adopt conventional routing schemes,
such as TopK routing, rather than exploring those
better suited for semantic-intensive tasks.

Definition Modeling. Several early studies on
DM (Noraset et al., 2017; Ni and Wang, 2017;
Gadetsky et al., 2018; Ishiwatari et al., 2019, inter
alia) leveraged pre-trained word embeddings as
global or local contexts of a term, to generate defi-
nitions of the given target word. Then Huang et al.
(2021); Kong et al. (2022); Zhang et al. (2022);
Giulianelli et al. (2023); Periti et al. (2024) propose
methods for DM using Transformer-based Seq2Seq
LMs (e.g., T5) and Causal LMs. In the era of LLM,
Jhirad et al. (2023) and Yin and Skiena (2023) used
large language models such as GPT-3.5 and GPT-4
to perform DM with in-context learning tailored
to diverse domains. Periti et al. (2024) explored
training causal LMs to generate with instruction
tuning; however, they still lack a detailed quality
evaluation and comphrehensive comparison with
baselines.

3 Methodology

In this section, we present the details of our pro-
posed [q LM-LEXICON framework. §3.1 intro-
duces the formulation to illustrate the main idea.
In §3.2, we illustrate the design of semantic expert
specialization, followed by model merging in §3.3.

3.1 Overview of | o LM-LEXICON

Given a seed model M that has been pre-trained,
our goal is to improve its multi-domain perfor-
mance in lexical semantics. As shown in Fig. 2,
the framework of "'q LM-LEXICON consists of
two components: (1) semantic expert special-
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Figure 2: Diagram of LM-LEXICON (i.e., Split-then-Merge) pipeline.

ization and (2) MoE model merging. The pro-
posed method contains three stages, training data
partitioning, parallel expert training, and separate
experts merging, i.e., a Split-then-Merge pipeline.
Considering the heterogeneity of glosses, we split
the training data into semantically distinctive clus-
ters to facilitate expert learning. To model various
domains, we use separate models to learn domain-
specific knowledge asynchronously. To perform
the DM task generally, we merge these experts into
a single MoE model for further fine-tuning.

3.2 Learning Domain-specific Semantic
Experts

Dataset Construction. Training data D consists
of triplets (c, t, d), where c represents the context in
which the term is used (either a sentence or phrase),
t denotes the term itself, and d is its reference defi-
nition. A concatenated sequence is then formatted
using the prompt template p(-, -) as input. Specif-
ically, we follow Giulianelli et al. (2023) to use
p = <BOS>“{{c}}” WHAT IS THE DEFINITION
OF “{{t}}”<EOSs> as the prompt template.

Clustering. o LM-LEXICON begins with the
training data partitioning since merging without
it could lead to a group of homogeneous experts.
To cluster training data, we calculate the embed-
dings of p(c, t) in each training sample with nvidia-
embed-v2 (Lee et al., 2025), and then cluster with

balanced k-means (Malinen and Frinti, 2014). This
process results in NV clusters in terms of lexical se-
mantics, each related to a semantic domain such
as adjectives and proper nouns (see Fig. 3), cor-
responding to partitioned training datasets D =
{D1,...,Dn}. It also produces N cluster cen-
troids {v,ve,...,v,}. In the present study, we
perform pre-experiments to determine the number
of clusters and select N = 4 as the best cluster
numbers by the cluster cohesion and separation in
the DM scenario (See Appendix §C.1), as well as
considering the training and inference efficiency.

Experts Training. Initializing from a seed model
M, we train N x LMs: {My,..., My} as ex-
perts, with each model M, being trained on the
corresponding dataset D;, using the negative log-
likelihood (NLL) loss in Eq. 1:

LaiL = — Et.q)~p |log P(d | ple,t))|. (D)

Here, d denotes the definition predicted by the
model, given the prompt p(-, -). We employ a loss-
masking strategy to omit the tokens of prompt dur-
ing loss computation, ensuring that gradients are
only propagated through tokens in the part of pre-
dicted definition. When expert training finished,
we end up with N different LMs, with each spe-
cialized in a domain D;.



3.3 Merging Experts into a Unified MoE

After all domain experts are obtained, previous
works either average the final output distributions
of experts to generate next token (Gururangan et al.,
2023) or select experts by determining which do-
main the input belongs to at the test time (Li et al.,
2022). Differently, we perform MoE Upcycling by
merging the weights of experts, aiming at mixing
model capabilities across diverse domains.

Model Merging. We combine semantic experts
into a unified MoE to exploit the parametric do-
main capability (Sukhbaatar et al., 2024; Zhou
etal., 2025). In the composition, " q LM-LEXICON
brings together the feed-forward networks (FFNs)
of the expert models as expert layers in MoE and
averages the remaining parameters. Specifically, if
FFNY(x) is the FFNs at the (-th layer of the i-th
expert M;, then the combined MoE layer for input
representation x at layer ¢ will be computed as:

N

FFNyoe(z) = > G(x) -FFN{(z).  (2)

i=1

where G(-) is a semantic domain-level router. Dur-
ing both training and inference, the input repre-
sentation x will be routed to the nearest centroid
by computing its pairwise cosine similarity with
each semantic label (i.e., the centroid of a domain
cluster), as illustrated in §3.2. G(-) usually has a
sparse output and hence switches on only some
experts. In Iq LM-LEXICON, we start from top-
k (k = 2) routing (Shazeer et al., 2017), where
G(x) = Softmax(TopK(W*z)), where W' is a
linear transformation in router. For multihead self-
attention (MHA) sublayers and the remaining pa-
rameters (e.g., embedding layer), we average the
weights of domains. The merging process of MoE
model is provided in Algorithm 1.

The above merging model into a MoE introduces
router G with new parameters W*, which requires
further learning to make optimal choices. To en-
hance semantic-aware experts after merging, we
continue to slightly fine-tune the router G and ex-
pert layers to coordinate them in the semantic rep-
resentation space.

4 Experiments

4.1 Implementation Details

Datasets. We use the benchmarks introduced in
Ishiwatari et al. (2019)(see Table 1), which consist

Algorithm 1 Compose MHA and MLP modules
for each decoder layer ¢ in [ q LM-LEXICON.

aen}-

Input: Domain Experts € := {eq, €2, ...
Output: LM-LEXICON-MOE (M)

1: procedure MODULES-COMPOSER(E)

2: M+ > INIT STATE DICT

3: for ¢; € £ do > ITERATE EACH EXPERT
4: 1t < GetExpertldx(e;)

5:

6: Omha> Omip < HookWeights(e;)

7: for 6 € {014, Omip} do

8: if IsRouterLayer(6) then

9:

10: n < FormatName(0, i)

11: M(n] 6

12: else > AVERAGE 6 OF MODULE
13: M(n] < M.get(n,0)+0/|€|
14: return M

of four small datasets and 3D-EX from Almeman
et al. (2023) (see details in §A).

* WordNet (Noraset et al., 2017) is an online
dataset! of terms, definitions, and examples.

* Oxford (Gadetsky et al., 2018) is built on the
widely used online oxford dictionary?.

« Wikipedia® (Ishiwatari et al., 2019) is intro-
duced to test the model capacity on the de-
scription of phrases, rather than words.

+ Urban (Ni and Wang, 2017)* contains terms
of internet slang and urban words.

* 3D-EX (Almeman et al., 2023) is the largest
English definition modeling dataset® which
comprises many well-known DM resources,
including the four mentioned datasets.

Note that we perform clustering only on 3D-EX
and use the resulting four clusters for finetuning
and merging semantic experts.

Compared Baselines. Llama-3-8B (Dubey et al.,
2024) is used as the seed model for asynchronous
expert training. We select three types of strong
baseline methods for comparison purposes.

"https://wordnet.princeton.edu
2https://en.oxforddictionaries.com
3https://www.wikidata.org
4https://www.urbandictionary.com
Shttps://github.com/F-Almeman/3D-EX
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WordNet Oxford Wikipedia Urban 3D-EX
genre formal formal web idiom misc.
domain synset lexicon encyclopedia slang multi
publish year 2017 2018 2018 2017 2023
# Stain 13,883 97, 855 887,455 411, 384 1,309, 312
# Sl 1,752 12,232 44,003 57,883 513,789
# Sty 1,775 12,232 57,232 36,450 450,078
#glo.perterm 1.754+1.19 2.994+4.41  5.86 4 78.25 2.1142.92 6.00 £ 53.78
#tok. perterm  1.00 £ 0.00 1.00 £ 0.00 1.85£0.93 1.44 +0.72 1.45£0.78
# tok. per ctx. 5.79+3.44 19.024£9.18 19.68£6.31 11.36+6.02 18.82+£9.99
#tok. perglo.  6.64+3.78 11.41+7.13 5.97+4.51 11.02 4+ 6.86 8.97 +6.76
% overlap rate ~ 0.00 / 0.00 80.72 / 0.09 0.00 / 0.00 20.62 / 20.56 0.00 / 0.00

Table 1: For datasets used in this paper, we report the mean and standard deviation of per-term, per-context, and
per-gloss statistics. We report the number of terms of samples denoted S? for train, valid, and test splits in each
dataset. The lexical overlap of each dataset is computed with |St.. N SLy| / |SLy|- Specifically, the % is computed
by intersection rate of term occurrence and the % is computed by intersection rate of pair-wise “term @ gloss”.

* Supervised Seq2seq LM: We reproduce
Rerank-T5 (Huang et al., 2021), Contrast-T5
(Zhang et al., 2022), SimpDefiner (Kong et al.,
2022), MDM-T5 (Zhang et al., 2023), and
Flan-T5-Def (Giulianelli et al., 2023).

* Supervised Causal LM: We report the in-
distribution results of LlamaDictionary (Periti
et al., 2024), which is finetuned on Llama-3-
8B-Instruct, and assess its out-of-distribution
performance for the unseen domains.

* Frontier Causal LM: We test GPT-4-
Turbo (Achiam et al., 2023), Gemini-1.5-Pro
(Reid et al., 2024), and Claude-3-Opus (An-
thropic, 2024) with random exemplar selec-
tion (Random-ICL) and retrieval-based ex-
emplar ranking (Retrieval-ICL) based on Wu
et al. (2023) in many-shot settings.

Training and Evaluation Details. We run in-
struction tuning on four clusters obtained from
3D-EX respectively. The models trained on four
clusters of 3D-EX are merged through §3.3. After
merging, we proceed to fine-tune the MoE model
to learn routers using the full 3D-EX dataset. In
addition, we perform instruction tuning on the four
real-world datasets. The hyperparameters can be
found in the Tab. 12. We run three times with seeds
to report the mean results and the standard devia-
tion, with seed s; € {21,42,84}. All experiments
are conducted on 8 x NVIDIA H100. Model sizes
and training FLOPs are reported in Table 6.

Visualized Sharded 3D-EX

(Four-centroid Clusters)
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[Person Name]
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hugh o'bryant,
Jjack richardson,
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continental shelf, 335
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Figure 3: Four-cluster UMAP plot of 10K random defi-
nitions of terms in 3D-EX (§4). Each cluster is assigned
manually with a [label] by their major constituents.

We employ metrics including (1) lexical n-gram-
based: BLEU (Papineni et al., 2002), ROUGE-L
(Lin, 2004), and METEOR (Lavie and Agarwal,
2007); (2) semantic-based: BERTSCORE (Zhang
et al., 2019), MOVERSCORE (Zhao et al., 2019),
and MAUVE (Pillutla et al., 2021). We reuse the
implementation of BLEU in Huang et al. (2021),
ROUGE and BERTSCORE used in Giulianelli et al.
(2023), as well as the rest of metrics for evaluation.
To further evaluate the effectiveness of our method,
we perform a human evaluation described in §4.2.

4.2 Main Results

®We develop ad-hoc heuristic parser for proprietary models



WordNet Oxford Wiki Urban 3D-EX Avg.
BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE Results
Rerank-T5 (2()21)"‘ 30.91 30.99 25.56 28.00 55.61 57.25 17.77 18.25 34.43 38.57 32.85/34.61
Contrast-T5 (2022)%* 30.81 26.27 22.51 28.18 55.26 42.27 17.53 16.34 34.27 37.62 32.07/30.13
SimpDefiner (2022)"' 28.91 20.47 23.48 29.59 44.03 49.26 13.54 15.37 32.08 31.57 28.40/29.25
MDM-T5 (2023)% 31.18 32.55 24.16 27.68 54.33 55.83 17.53 17.18 32.67 32.38 31.97/33.12
Flan-T5-Def (2023)"' 31.96 40.45 21.34 32.39 13.82 23.97 5.33 10.61 26.43 25.12 19.77/26.50
LlamaDict (2024)"' 33.86 43.50 22.77 36.46 14.38 25.29 15.70 14.51 24.56 26.11 22.50/29.17
GPT-4-TURBO
< + Random-ICL 30.95 32.61 21.93 30.82 31.63 45.89 11.08 12.19 25.93 34.48 24.30/31.19
< + Retrieval-ICL 27.46 29.74 20.44 34.35 35.40 40.68 22.53 26.53 29.73 37.66 27.11/33.79
CLAUDE-3-OPUS
< + Random-ICL 28.63 27.84 19.99 34.21 23.30 35.22 1.59 3.08 18.57 28.49 18.41/25.76
< + Retrieval-ICL 18.57 21.76 15.51 25.99 14.59 15.83 5.93 7.19 17.46 24.67 14.41/19.08
GEMINI-1.5-PRO
< + Random-ICL 23.42 26.27 25.51 35.97 6. 48.13 8.44 9.59 294 38.02 24.72/31.59
< + Retrieval-ICL 25.24 27.88 28.10 36.98 35.59 43.71 8.85 9.18 32.99 39.14 26.15/31.37
aq LM-LEXICON-DENSE (8B)
< + Zero-shot 36.99% 59 37.83%.45 26.09060 3455055 57.9%44 5956750 26.00%,, 28.35%,s 35015, 43.32,, 34.63*/38.79*
<5 + BoN-Oraclet
< + BoN-ORM 3773006 3794035 206.74% 15 35.18( 59 5933515 594675, 2673799 28.547,5 34.837, 42.687 .3 37.07°/40.76*
a LM-LEXICON-MOE (4x8B)
< + Zero-shot 40.09% 1, 40.51% 0 2335025 3294049 6031755 5552033 3126755 33.81%, 45.69% .5 46.07% ¢ 40.14* /41.77*
< + BoN-Oraclet
< + BoN-ORM 40330 15 40.697 55 24.18037 337906, 60.887 55 57.66073 31.087,; 33267, 45.867 35 46387, 40.46%/42.35"

Table 2: Main results on five benchmarks®. We highlight the highest scores among LM-LEXICON and compared
methods; * denotes the significance test, where p < 0.005 between our method and Rerank-T5 (prior SOTA). &
denotes that we reproduce the in-distribution results with supervised training, and 1 indicates that the lines of results
are not directly comparable with other settings. All *-ICL settings employ the best setting with a 32-shot in practice.

Competitive Performance of "o LM-LEXICON.
Table 2 presents the performance comparisons
among baselines and existing SoTA methods
for DM, including LM-LEXICON-DENSE mod-
els (trained on four real-world datasets) and
LM-LEXICON-MOE, the proposed MoE model.

o LM-LEXICON outperforms strong supervised
methods and frontier models with a distinct advan-
tage. Specifically, (1) "q LM-LEXICON obtains
nearly 10% extra BLEU and ROUGE improve-
ments on 3D-EX over the prior SoTA. (2) It per-
forms exceptionally on smaller datasets as well, for
example, " q LM-LEXICON achieves the highest
scores ({31.26%, 33.81%} on {BLEU, ROUGE})
among all compared methods on Urban dataset, in-
dicating the efficacy of our method to model rare
word senses and usages. (3) The comparison be-
tween the many-shot learning of best perfomant
frontier LMs and 'q LM-LEXICON demonstrates
that our method surpasses significantly larger dense
models, by {23.44%, 9.14%} on {Wiki, WordNet}
in BLEU for instance. (4) It is also observed that
the Oxford dataset has lower performance with our
method. A possible reason is that a short term and
relatively long context in Oxford makes it harder
for the model to predict accurate definitions. Fur-
thermore, compared to other benchmarks, the Ox-
ford dataset exhibits a significantly high term over-

& LM-LEXICON to extract our focused part of the generation.

lap rate of around 80% along with a near-zero term-
definition overlap rate. This stark contrast under-
scores the strong polysemy inherent in Oxford’s
terms. Consequently, models trained on Oxford
struggle to generalize effectively when encounter-
ing previously seen terms used in different contexts.
Overall, " LM-LEXICON shows a clear advantage
that confirms the effectiveness of introduced se-
mantic expert specialization and semantic-focused
sparsifying upcycling into 'q LM-LEXICON.

Human Evaluation. The human evaluation was
conducted using a random subset of 300 samples
from the 3D-EX, comparing definitions generated
by our model (LM-LEXICON-MOE) and the base-
lines (LM-LEXICON-DENSE and three proprietary
models). We focus on comparing with proprietary
models as they represent the current state-of-the-
art in practical deployment and are the primary
competitors in real-world lexicon construction sce-
narios. To obtain a fine-grained understanding of
model-specific characteristics, we further propose
five criteria: (1) accuracy measures how correctly
the definition captures the core semantic meaning
of the word; (2) clarity evaluates the definition’s
comprehensibility and transparency in conveying
meaning, focusing on how easily readers can under-
stand the concept; (3) conciseness assesses whether
the definition achieves optimal length without re-



Performance vs. Repeated Sampling Scale

o —
——

52 i

N
o0
@

S ¥ » WordNet
544 o Oxford
VR ”
s Wiki
840 . g“ " < v wVrvS . Ut
— k ° ’* - 4 AN ban
o ¢ “ 3D-EX
."‘ ......................
32 ,:/‘/.,-
28 2
0 20 40 60 80 100 120

# of Generations (K)

Figure 4: Best-of-N repeated sampling results (BLEU)
on five benchmarks evaluated by oracle verifier.

dundancy or omission; (4) context appropriateness
measures how well the definition reflects associ-
ated contexts, situations, and pragmatic constraints
of the words; (5) grammar and fluency evaluates
the grammatical correctness and naturalness of the
definition. We employ three graduate students ma-
joring in linguistics and lexicography, who were
instructed to assess each of the above criteria on a
5-point scale, where 1 indicates the poorest quality
and 5 represents the highest quality (Figure 12).
The model names were kept anonymous from hu-
man evaluators to avoid possible bias, whereas the
reference definitions remained accessible to them.
Figure 5 (right) presents the human evaluation re-
sults across five criteria, showing the average scores
for each model’. LM-LEXICON-MOE consistently
outperforms other models in most dimensions, with
particularly strong performance of accuracy (4.6).
While all models demonstrate competent perfor-
mance with scores above 3.8, LM-LEXICON-MOE
shows notable advantages in capturing contextual
nuances and maintaining clarity and conciseness in
definitions. The proprietary models perform simi-
larly well but show slightly lower scores in terms
of context appropriateness and conciseness than
other criteria. We provide a detailed analysis of a
representative example “coon’ in Appendix E.

4.3 Ablation Study and Extra Investigation

In this section, we further conduct an in-depth anal-
ysis of Ilq LM-LEXICON, regarding: (1) data par-
tition method, (2) routing policy, and (3) number
of experts. In addition, we explore the impact of
test-time scaling.

"Details on annotators’ agreement can be found in §D.

Ablation on Different Data Partition Designs.
Since | q LM-LEXICON integrates the knowledge
acquired by experts from various data partitions,
our first focus is on the impact of data partition
methods. To this end, we considered three settings:
(1) no split; (2) random split; and (3) lexical split.
For random split, we follow Li et al. (2022) to slice
the data into four balanced subsets and specialise
an expert for each of them. For lexical split, we
perform partition by TF-IDF (Sparck Jones, 1972).

As shown in Table 3, we observed that the origi-
nal setting with semantic embedding clustering out-
performs lexical-based partition with about +7%
gains in BLEU and +1% gains in ROUGE on 3D-
EX. The results imply that learning from semantic-
targeted data clusters may help capture more pre-
cise senses and use more appropriate words to
compose definitions. Lastly, it enables 'q LM-
LEXICON to develop more robust experts for vari-
ous domains.

Model | BLEU ROUGE p-value
qQ LM-LEXICON | 45.69+03 46.07+01 —

+ w/ no split 35.13102  43.46x03 2.9¢7°

+ w/ random split 36.24+14 43.58+08 1.6e7°

+ w/ lexical split 38.13x05 44.12x06 1.3¢™*

Table 3: Ablation on data partition method.

Comparison among Routing Policies. Other
than domain-level routing used in q LM-
LEXICON as default, we experiment on (1) top-1
token-level; (2) top-2 token-level; and (3) sequence-
level routing. For token-level routing, we follow
the implementation of Fedus et al. (2022) and Jiang
et al. (2024). For sequence-level routing, we follow
Pham et al. (2023).

Model \ BLEU ROUGE p-value
a LM-LEXICON ‘ 45.69+03  46.07+01 —

+ w/ top-1 token-level | 43.12+04 43.79+05 1.9¢73

+ w/ top-2 token-level | 45.38+02 45.21+01 8.6e*

+ w/ sequence-level 4447102  44.82+03 2.7e73

Table 4: Ablation on different routing policies.

Table 4 presents that the domain-level routing
(g LM-LEXICON) is the most effective, even
surpassing one of the popular scheme, the top-2
token-level routing, indicating that semantic rout-
ing via specified domain cluster is more beneficial
for semantic-intensive tasks.
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Figure 5: Scaling performance gains and human evaluation results. The left figure: Scaling test performance on
3D-EX, with varying number of experts. The right figure: Human evaluation results across five criteria.

Different Number of Semantic Experts. Except
for the above four-experts LM-LEXICON-MOE, to
investigate the impact of the number of semantic
experts, we compare varied number of semantic
experts (N = 1,2,4,8). Notably, when N = 1,

a LM-LEXICON collapses back to a dense model
and expands to a sparse model with N > 1 experts.

As shown in Figure 5 (left), we find that across
all settings of N, the performance of our method
consistently increases and outperforms the others,
which are composed of fewer experts. For example,
the model of N = 1 returns 41.38% while N = 8
yields 46.86% in BLEU. This tendency implies
the scalability of our method, using more semantic
experts. This trend can be extended by integrat-
ing more fine-grained semantic experts (Dai et al.,
2024), but we leave this direction for future work.

Impact of Test-time Scaling. In light of Stien-
non et al. (2020); Cobbe et al. (2021), we are curi-
ous on how to boost performance further via test-
time scaling, notably ground truth-based (Oracle)
verifier and Best-of-N (BoN) sampling with an out-
come reward model (ORM). For oracle verifier,
it uses reference as verification to provide binary
feedbacks. For an ORM, it employs scalar feedback
to select the optimal generation from candidates.

As depicted in Table 2 (BoN-ORM), interest-
ingly, the oracle verifier is able to boost task perfor-
mance (avg. ABLEU > 2%) for LM-LEXICON-
DENSE. However, it exhibits more limitations for
LM-LEXICON-MOE; we speculate it is due to the
diversity diminishment of models, as illustrated in
Brown et al. (2024). Intuitively, optimal results are
achieved with oracle verifier (Fig. 4) through re-

peated sampling with 128 completions per test sam-
ple. Intergating with the ORM or Oracle verifier,
a LM-LEXICON’s generation quality shows con-
sistent improvements across five benchmarks with
the increase in the number of generations. This out-
come aligns with the findings on math reasoning
tasks (Cobbe et al., 2021; Brown et al., 2024).

5 Conclusion

In this paper, we present LM-LEXICON, an ap-
proach that combines domain experts upcycling
with a sparse MoE model, which can generate ap-
propriate definitions of terms in various domains
and genres. We show that LM-LEXICON signifi-
cantly outperforms frontier LLMs and strong su-
pervised baselines. We hope LM-LEXICON could
be extended to more domains and other semantic-
intensive tasks in the future.

Limitations

Extrapolation to More Tasks. While we believe
our observations and conclusions are comprehen-
sive within our experimental settings, our work
only focus on the task of definition modeling in
English in this work. Future work could benefit
from our findings in extending to other domains
and related tasks in semantic-intensive scenarios.

Training Efficienty and Cost. Our method per-
forms supervised fine-tuning of N x M expert
LMs that are initialized from a seed model. The
training process can be thoroughly offline and asyn-
chronous; however, it still needs an essential and
sufficient computation budget to some extent. We



encourage people to further explore parameter-
efficient training methods based on LM-LEXICON.

Stronger Verifier. Our results from Section §4.3
highlight the importance of improving sample veri-
fication methods tailored for definition modeling,
and even more general language generation, which
are currently unavailable. Most existing verifica-
tion methods have been developed only to solve
complex reasoning tasks, such as mathematical,
programming, and logical reasoning problems. We
believe that equipping models with the ability to
assess their own generations will allow test-time
compute methods to be scaled further.

Ethics Statement

This research was conducted with careful consid-
eration of ethical implications. All data used in
this study was collected from public sources with
appropriate permissions. We have taken measures
to ensure privacy protection and prevent misuse of
our model. The computational resources were used
responsibly, and we have documented all poten-
tial biases and limitations. Our annotation process
followed fair labor practices with appropriate com-
pensation for annotators.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Thomas E. Ahlswede. 1985. A tool kit for lexicon build-
ing. In 23rd Annual Meeting of the Association for
Computational Linguistics, pages 268-276, Chicago,
Mlinois, USA. Association for Computational Lin-
guistics.

Fatemah Almeman, Hadi Sheikhi, and Luis Es-
pinosa Anke. 2023. 3D-EX: A unified dataset of
definitions and dictionary examples. In Proceed-
ings of the 14th International Conference on Recent
Advances in Natural Language Processing, pages
69-79, Varna, Bulgaria. INCOMA Ltd., Shoumen,
Bulgaria.

Fatemah Yousef Almeman, Steven Schockaert, and Luis
Espinosa Anke. 2024. WordNet under scrutiny: Dic-
tionary examples in the era of large language mod-
els. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 17683-17695, Torino, Italia. ELRA and ICCL.

Al Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Claude-3 Model Card.

Trenton Bricken, Adly Templeton, Joshua Batson,
Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac
Hatfield-Dodds, Alex Tamkin, Karina Nguyen, and
6 others. 2023. Towards monosemanticity: Decom-
posing language models with dictionary learning.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Damai Dai, Chengqi Deng, Chenggang Zhao, R.x. Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y. Wu, Zhenda Xie, Y.k. Li, Panpan
Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wen-
feng Liang. 2024. DeepSeekMoE: Towards ultimate
expert specialization in mixture-of-experts language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1280-1297, Bangkok,
Thailand. Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, Roger Grosse, Sam McCandlish, Jared
Kaplan, Dario Amodei, Martin Wattenberg, and
Christopher Olah. 2022. Toy models of superpo-
sition. Transformer Circuits Thread.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

J. L. Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological Bulletin,
76(5):378-382.

A Gadetsky, I Yakubovskiy, and D Vetrov. 2018. Condi-
tional generators of words definitions. In ACL 2018-
56th Annual Meeting of the Association for Compu-
tational Linguistics, Proceedings of the Conference
(Long Papers), pages 266-271.


https://doi.org/10.3115/981210.981243
https://doi.org/10.3115/981210.981243
https://aclanthology.org/2023.ranlp-1.8
https://aclanthology.org/2023.ranlp-1.8
https://aclanthology.org/2024.lrec-main.1538
https://aclanthology.org/2024.lrec-main.1538
https://aclanthology.org/2024.lrec-main.1538
https://doi.org/10.18653/v1/2024.acl-long.70
https://doi.org/10.18653/v1/2024.acl-long.70
https://doi.org/10.18653/v1/2024.acl-long.70
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619

Mario Giulianelli, Iris Luden, Raquel Fernandez, and
Andrey Kutuzov. 2023. Interpretable word sense
representations via definition generation: The case
of semantic change analysis. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3130-3148, Toronto, Canada. Association for Com-
putational Linguistics.

Suchin Gururangan, Margaret Li, Mike Lewis, Wei-
jia Shi, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. 2023. Scaling expert language models
with unsupervised domain discovery. arXiv preprint
arXiv:2303.14177.

Lotte Hogeweg and Agustin Vicente. 2020. On the
nature of the lexicon: The status of rich lexical mean-
ings. Journal of Linguistics, 56(4):865-891.

Han Huang, Tomoyuki Kajiwara, and Yuki Arase. 2021.
Definition modelling for appropriate specificity. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
2499-2509, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Shonosuke Ishiwatari, Hiroaki Hayashi, Naoki Yoshi-
naga, Graham Neubig, Shoetsu Sato, Masashi Toy-
oda, and Masaru Kitsuregawa. 2019. Learning to
describe unknown phrases with local and global con-
texts. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3467-3476, Minneapolis, Minnesota. Association for
Computational Linguistics.

James Jhirad, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2023. Evaluating large language models’ un-
derstanding of financial terminology via definition
modeling. In Proceedings of the 13th International
Joint Conference on Natural Language Processing
and the 3rd Conference of the Asia-Pacific Chap-
ter of the Association for Computational Linguistics:
Student Research Workshop, pages 93—100.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, and 1 oth-
ers. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Cunliang Kong, Yun Chen, Hengyuan Zhang, Liner
Yang, and Erhong Yang. 2022. Multitasking frame-
work for unsupervised simple definition generation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5934-5943, Dublin, Ireland.
Association for Computational Linguistics.

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An
automatic metric for MT evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the Second Workshop on Statistical Machine

Translation, pages 228-231, Prague, Czech Republic.
Association for Computational Linguistics.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2025. Nv-embed: Improved techniques
for training llms as generalist embedding models.
Preprint, arXiv:2405.17428.

Leeroo-Al 2024. Mergoo: A library for easily merg-
ing multiple 1lm experts, and efficiently train the
merged llm. https://github.com/Leeroo-AI/
mergoo. Accessed: 2024-07-23.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A Smith, and Luke Zettle-
moyer. 2022. Branch-train-merge: Embarrassingly
parallel training of expert language models. arXiv
preprint arXiv:2208.03306.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Mikko I. Malinen and Pasi Frinti. 2014. Balanced k-
means for clustering. In Structural, Syntactic, and
Statistical Pattern Recognition, pages 32—41, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Ke Ni and William Yang Wang. 2017. Learning to ex-
plain non-standard english words and phrases. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 2:

Short Papers), pages 413-417.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and
Doug Downey. 2017. Definition modeling: Learning
to define word embeddings in natural language. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, and 1 others. 2019. Pytorch: An impera-
tive style, high-performance deep learning library.
Advances in neural information processing systems,
32.

Francesco Periti, David Alfter, and Nina Tahmasebi.
2024. Automatically generated definitions and their
utility for modeling word meaning. In Proceedings
of the 2024 Conference on Empirical Methods in


https://doi.org/10.18653/v1/2023.acl-long.176
https://doi.org/10.18653/v1/2023.acl-long.176
https://doi.org/10.18653/v1/2023.acl-long.176
https://doi.org/10.18653/v1/2021.emnlp-main.194
https://doi.org/10.18653/v1/N19-1350
https://doi.org/10.18653/v1/N19-1350
https://doi.org/10.18653/v1/N19-1350
https://doi.org/10.18653/v1/2022.acl-long.409
https://doi.org/10.18653/v1/2022.acl-long.409
https://aclanthology.org/W07-0734
https://aclanthology.org/W07-0734
https://aclanthology.org/W07-0734
https://arxiv.org/abs/2405.17428
https://arxiv.org/abs/2405.17428
https://github.com/Leeroo-AI/mergoo
https://github.com/Leeroo-AI/mergoo
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/2024.emnlp-main.776
https://aclanthology.org/2024.emnlp-main.776

Natural Language Processing, pages 14008-14026,
Miami, Florida, USA. Association for Computational
Linguistics.

Savvas Petridis, Ben Wedin, Ann Yuan, James Wexler,
and Nithum Thain. 2024. ConstitutionalExperts:
Training a mixture of principle-based prompts. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 574-582, Bangkok, Thailand.
Association for Computational Linguistics.

Hai Pham, Young Jin Kim, Subhabrata Mukherjee,
David P. Woodruff, Barnabas Poczos, and Hany Has-
san. 2023. Task-based MoE for multitask multilin-
gual machine translation. In Proceedings of the 3rd
Workshop on Multi-lingual Representation Learning
(MRL), pages 164—172, Singapore. Association for
Computational Linguistics.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. Advances in Neural Information Process-
ing Systems, 34:4816-4828.

James Pustejovsky and Branimir Boguraev. 1993. Lex-
ical knowledge representation and natural language
processing. Artificial Intelligence, 63(1):193-223.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
16. IEEE.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan
Firat, Julian Schrittwieser, and 1 others. 2024. Gem-
ini 1.5: Unlocking multimodal understanding across
millions of tokens of context. arXiv preprint
arXiv:2403.05530.

Zhihong Shao, Damai Dai, Daya Guo, Bo Liu, and
Zihan Wang. 2024. Deepseek-v2: A strong, econom-
ical, and efficient mixture-of-experts language model.
ArXiv, abs/2405.04434.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representa-
tions.

Zhengyan Shi, Adam X Yang, Bin Wu, Laurence Aitchi-
son, Emine Yilmaz, and Aldo Lipani. 2024. Instruc-

tion tuning with loss over instructions. arXiv preprint
arXiv:2405.14394.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11-21.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning
research, 15(1):1929-1958.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3008-3021. Curran Associates,
Inc.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma,
Hu Xu, Xi Victoria Lin, Baptiste Roziere, Jacob
Kahn, Shang-Wen Li, Wen tau Yih, Jason E We-
ston, and Xian Li. 2024. Branch-train-mix: Mixing
expert LLMs into a mixture-of-experts LLM. In First
Conference on Language Modeling.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and 1 others. 2020. Transformers: State-of-the-art
natural language processing. In Proceedings of the
2020 conference on empirical methods in natural
language processing: system demonstrations, pages
38-45.

Zhenyu Wu, Yaoxiang Wang, Jiacheng Ye, Zhiyong
Wau, Jiangtao Feng, Jingjing Xu, and Yu Qiao. 2023.
OpenlCL: An open-source framework for in-context
learning. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 489-498,
Toronto, Canada. Association for Computational Lin-
guistics.

Yunting Yin and Steven Skiena. 2023. Word defini-
tions from large language models. arXiv preprint
arXiv:2311.06362.

Hengyuan Zhang, Dawei Li, Shiping Yang, and Yan-
ran Li. 2022. Fine-grained contrastive learning for
definition generation. In Proceedings of the 2nd Con-
ference of the Asia-Pacific Chapter of the Association
Jfor Computational Linguistics and the 12th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1001-1012.

Linhan Zhang, Qian Chen, Wen Wang, Yuxin Jiang,
Bing Li, Wei Wang, and Xin Cao. 2023. Exploit-
ing correlations between contexts and definitions
with multiple definition modeling. arXiv preprint
arXiv:2305.14717.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M Meyer, and Steffen Eger. 2019. Moverscore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings


https://doi.org/10.18653/v1/2024.acl-short.52
https://doi.org/10.18653/v1/2024.acl-short.52
https://doi.org/10.18653/v1/2023.mrl-1.13
https://doi.org/10.18653/v1/2023.mrl-1.13
https://doi.org/10.1016/0004-3702(93)90017-6
https://doi.org/10.1016/0004-3702(93)90017-6
https://doi.org/10.1016/0004-3702(93)90017-6
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:269613809
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://openreview.net/forum?id=nqLAuMOF6n
https://openreview.net/forum?id=nqLAuMOF6n
https://doi.org/10.18653/v1/2023.acl-demo.47
https://doi.org/10.18653/v1/2023.acl-demo.47

of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 563-578.

Yuhang Zhou, Giannis Karamanolakis, Victor Soto,
Anna Rumshisky, Mayank Kulkarni, Furong Huang,
Wei Ai, and Jianhua Lu. 2025. MergeME: Model
merging techniques for homogeneous and heteroge-
neous MoEs. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
2315-2328, Albuquerque, New Mexico. Association
for Computational Linguistics.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqi Tong, Conghui He, and Yu Cheng. 2024.
LLaMA-MoE: Building mixture-of-experts from
LLaMA with continual pre-training. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 15913-15923,
Miami, Florida, USA. Association for Computational
Linguistics.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable and
transferable sparse expert models. arXiv preprint
arXiv:2202.08906.

A Additional Experiment Details

This is a section in the appendix. Introduce dataset
components, hyperparameter settings, and other
experimental details.

Data Processing. Raw 3D-EX (see fig. 6) con-
sists of ten lexicon sources of <t, ¢, d> triplets, we
use the word-level split on each of the sources to
train, validate and test our models in this paper. We
developed the following steps to undergo the pre-
processing procedure for the raw 3D-EX dataset.

* We filter out all instances from the subsets
including Hei++, MultiRD, and Webster’s
Unabridged, since they do not have any us-
able example context for each term of words.

* We discard instances that do not meet any of
the following conditions: @ TERM must be of
string type, @ DEFINITION must be of string
type, @ EXAMPLE must not be empty, and @
DATASET_NAME must not be empty.

* To enhance the model’s ability to interpret
words in various contexts, we split the sample
entries with multiple example contexts into
separate data instances for each context. This
approach increases the number of samples the
model sees during training.

3D-EX Constituents Dist. (%)

Sci-definition 5.44% o
‘ Wiktionary 4.65%

Figure 6: 3D-EX constituents distribution.

In addition, we observed many examples in the ex-
isting datasets that share the same term-context pair
but with different definitions, which may cause neg-
ative effects on model learning if there exist many
semantics-divergent examples. To summarize and
display the potential impacts, we report the salient
statistics about this finding of these datasets shown
in the following Table 5.

CODWOE 2.14%

Dataset Split #All #Div. % Div. /All
Strain 13,883 2,723
WordNet  Syaiid 1,752 368
Stest 1,775 333
Strain 82,479 34 0.04
Oxford Syaig 10,285 2 0.02
Seest 10,306 0 0.00
Strain 887,455 186 0.02
Wikipedia Syaia 44,003 16 0.04
Stest 57,232 14 0.02
Strain 411,382 1,424 0.35
Urban  Syaig 57,883 152 0.26
Seest 38,371 122 0.32
Strain 1,309,312 35,632 2.72
3D-EX  Syaig 513,789 12,551 2.44
Sest 450,078 7,599 1.69

Table 5: Divergent examples statistics of each dataset.
# All: number of all examples; # Div.: number of all
divergent examples; % Div. / All: ratio of divergent
examples in all examples.

Clustering Setup. Compared with Gururangan
et al. (2023), we consider to mine the intrinsit
semantic meaning of term associated with their
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context, instead of using lexical statistics clus-
tering method, like TF-IDF. We argue that the
method building on dense semantic clustering
would help upcycling models to learn specialized
sense interpretation-oriented experts, towards ro-
bust system for definition modeling. We run k-
means++ clustering of the Elkan variation method
with 1,000 max iteration, 1e~® tolerance of con-
vergence, and a fixed seed of 42. Considering the
computation and memory bounds, we first use 4 as
the number of clusters to form and the number of
centroids to generate. We further ablate this factor
in the section §4.3.

Training Details. LM-LEXICON was trained for
3 epochs with a global batch size of 8,192 tokens
(gradient accumulation 1, batch size per device
8, max sequence length 128) on 8 x H100-PCle-
80GB GPUs and a learning rate of 1e-6, minimum
learning rate of 3e-7 with a cosine annealing sched-
uler, as well as the warm-up steps with 6% ratio of
the total training steps. We used a global dropout of
0.2 (Srivastava et al., 2014) and a weight decay of
0.1 with AdamW optimizor (Loshchilov and Hut-
ter, 2018), and performed early stopping to obtain
the best model by the highest validation bleu.

Moreover, We run three times for each training
setup to report the mean results and their standard
deviation of metrics, with seed s; € {21,42,84},
respectively. We use Hugging Face Transformers
(Wolf et al., 2020) and Pytorch (Paszke et al., 2019)
to develop the training pipeline.

We run the branch training on each cluster of
data points obtained from the clustering results. As
depicted in tab. 12, We set up the following hyper-
parameters to train LM-LEXICON and vanilla fine-
tuned LLAMA-3-8B models in this paper. We used
the standard negative log-likelihood (NLL) loss to
train LM-LEXICON. Contrary to Shi et al. (2024),
to avoid the loss of the input sequence tokens over-
shadowing the actual output token loss, the loss
is only computed over the result tokens (Eq. 1),
limiting the potential to overfit to the input prompt
and context. This loss calculation method resulted
in faster training and robuster results overall.

Given a definition generation problem p(c,t)
and its golden reference d, we define a outcome re-
ward model as the following: ORM (P x D — R)
assigns a single value to s to indicate whether pre-
dicted d is correct. Given a specific dataset D,
we follow Cobbe et al. (2021) to use a negative
log-likelihood loss (Eq. 3) to frame the reward

modeling as a binary classification objective.

Lorm = —logo (1¢(z, yw) — re(z,m)) (3)

Where y,, is the preferred generation (i.e., cho-
sen response) and y; is the alternate generation
(i.e., rejected response) conditioned on the input
x := p(c, t). To train a ORM built on training set,
we leverage the golden reference d as the preferred
definition y,, and one of the model generations as
the alternate definition y; to express preferences for
each z, denoted as y,, >~ y; | x, where y,, and y;
denotes the preferred and dispreferred completion,
respectively. o is the sigmoid function and r4(-, -)
represents the parameterized reward function for
the concatenated input z and generation y.. To
enhance computing efficiency, we employ the ratio
of 1 : 32 to conduct repeated sampling and rerank
the generations by their log-likelihood (aka. confi-
dence) to acquire the top-eight items as a candidate
set of alternate generations for each input x.

Inference Setup. As shown in Table 2, for each
setting in “Zero-shot”, “BoN-Oracle”, and “BoN-
ORM?”, we orchestrate three separate runs for each
setting, using the same decoding parameters but
with different random seeds to ensure robustness
and consistency in the results. Specifically, for the
models LM-LEXICON-DENSE and LM-LEXICON-
MOE, specifically, we use the temperature of 0.6,
top-k of 50, top-p of 0.9, and repetition penalty of
1.05, ensuring uniformity across all evaluations.

For all benchmarks included in our test, as the
number of samples increases, the coverage metric
corresponds to the use of an oracle verifier. This
verifier checks which fraction of DM problems in
the test set can be approximated using any of the
samples that were generated to be as similar as pos-
sible to the ground truth. The selection of the most
similar generation is achieved through an iterative
comparison with the golden definition, ensuring a
robust matching process. In the case of the ora-
cle verification process by the oracle verifier, we
validate whether any output chosen prediction is
the most similar by comparing it with golden ref-
erences of the sample in the test set. In contrast,
for the verification process of ORM verifier, the
selection of the most similar generation is then per-
formed solely by the ORM verifier itself, without
relying on external feedback, ground-truth compar-
ison, or oracle input.

Miscellaneous. We developed our MoE language
modeling codebase based on Leeroo-Al (2024) and



implemented several routing policies and proposed
MOoE architectures. Aiming at more efficent evlau-
ation, we follow (Huang et al., 2021) and refactor
their implementation with concurrent metrics com-
putation to boost the inference procedure in large
models, please see the details in our released code.

B Carbon Footprint

The cost of fine-tuning LLM is lower than that
of pre-training them. Nevertheless, we think it is
critical to quantify and record the environmental
consequences of our research. Table 6 lists the ma-
terials required for a single run, which is conducted
using our own infrastructure. We calculate the car-
bon footprint estimation using a carbon intensity of
0.141 kg/kWh and 700W consumption per GPU®.

Model Hardware FLOPs Time (h) CO2eq (kg)
o LM-LEXICON-DENSE ~ 8xHI100  4.2¢!8 36.4 11.4
a LM-LEXICON-MOE 8xHI00  5.4e!® 32.8 14.6

Table 6: Details about the training required resources.

C Additional Evaluation Results
C.1 Data Clustering Results

Cluster C; Distanceiyra-cluster 4
Co (Adjective) 0.176
C (Scientific) 0.168
C5 (Proper Noun) 0.173
C'3 (Person Name) 0.185
Average 0.175

Table 7: Intra-cluster Distances (i.e., the cluster cohe-
sion)

We show the clustering results including cluster
cohesion and cluster separation in the following
Table 7 and 8, respectively.

C.2 In-Context Learning Evaluation

We show the scaling in-context learning experimen-
tal results as shown in Figure. 7.

C.3 Generation Examples of LM-LEXICON

As depicted in Figure 8, 9, 10, and 11, we provide
a cherry-picked example for each domain cluster
as shown in Figure 3 in definition modeling.

8Statistics: https://app.electricitymaps.com/map.

Cluster (C;, C]) Distance;yer-cluster T

Co, C1 0.694
Co, Co 0.713
Co, Cs 0.765
C1, Co 0.681
C1, Cs 0.707
Cs, Cs 0.720
Average 0.713

Table 8: Inter-cluster Distances (i.e., the cluster separa-
tion): Cy denotes the domain of “Adjective”, C; denotes
the domain of “Scientific”’, Cy denotes the domain of
“Proper Noun”, and C'5 denotes the domain of “Person
Name”.

Cluster-1 Example:

[Term] Combtooth Blenny

[Query] “the crested blenny is a species of Combtooth
Blenny found around New South Wales, Australia, ...”
What is the definition of “Combtooth Blenny”?
[Source] Wikipedia

[Reference] Combtooth Blenny: perciform marine fish

of the family blenniidae.

Figure 8: Example of C; (proper noun) from 3D-EX.

Cluster-2 Example:

[Term] brave

[Query] “familiarity with danger makes a brave man
braver but less daring - herman melville ...” What is the
definition of “brave”?

[Source] WordNet

[Reference] brave: possessing or displaying courage;

able to deal with danger or fear without flinching.

Figure 9: Example of C5 (adjective) from 3D-EX.
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Figure 7: Scaling the in-context learning results of frontier causal LMs on WordNet with k-shot demonstrations,
where k scales logarithmically from O to 128. Prior SOTA denotes the Rerank-T5 proposed by Huang et al. (2021).

Cluster-3 Example:

[Term] Michael Maclennan

[Query] “Godiva’s is a Canadian television comedy-
drama series created by Michael Maclennan with Julia
Keatley of Keatley Entertainment ...” What is the defini-
tion of “Michael Maclennan”?

[Source] Wikipedia

[Reference] Michael Maclennan: Canadian playwright,

screenwriter, and producer of television shows.

Figure 10: Example of C3 (person name) from 3D-EX.

Cluster-4 Example:

[Term] Lymphedema-distichiasis Syndrome
[Query] “two patients with Lymphedema-distichiasis
Syndrome illustrate that both Milroy’s ...”” What is the
definition of “Lymphedema-distichiasis Syndrome”?
[Source] Sci-definition

[Reference] Lymphedema-distichiasis Syndrome:
lymphedema distichiasis syndrome is a condition that

affects the normal function of the lymphatic system.

Figure 11: Example of C4 (scentific) from 3D-EX.

D Human Evaluation Agreement

To assess the agreement among the annotators, we
employed Fleiss’s Kappa (Fleiss, 1971), which is
a statistical measurement to assess the reliability
of the agreement between multiple raters. Fleiss’s
Kappa account for the possibility of agreement
occurring by chance. It is calculated using the
following formula:

Po—Fe
1-P,

R =
where:

* P, is the observed agreement among the
raters, and

» P, is the expected agreement by chance.

Table 9 presents Fleiss’s Kappa coefficients for
human evaluation agreement on each criterion and
model.



Criteria LM-Lexicon-MoE  LM-Lexicon-Dense  Claude-3-Opus  Gemini-1.5-Pro  GPT-4-Turbo
Accuracy 0.85 0.78 0.80 0.79 0.77
Clarity 0.82 0.75 0.78 0.76 0.74
Conciseness 0.80 0.74 0.77 0.75 0.73
Context Appropriateness 0.82 0.76 0.79 0.78 0.76
Grammar & Fluency 0.78 0.76 0.75 0.74 0.73

Table 9: Fleiss’s Kappa coefficient statistics for the agreement of human evaluation on each criterion and model.

E Comparison of Different Definitions

The following is a representative case of the gen-
erated definitions from five models including three
proprietary models, LM-Lexicon-Dense and LM-
Lexicon-MokE:

Word: "coon”

Context: "I’ll be a gone coon when the battle
starts”

Reference: "an eccentric or undignified rustic’
(from WordNet)

In the demonstration in Table 10, definition gen-
erated by LM-Lexicon-MoE (our method) is most
closely aligned with the reference definition’s core
meaning, which captures the derogatory connota-
tion and reflects the "undignified" aspect. In con-
trast, definitions produced by the other models fail
to capture fundamental aspects of the reference
definition, for instance, Claude-3-Opus and GPT-4-
Turbo completely deviate from the basic meaning
of the target word in the context.

In general, there are some notable patterns:

B

* Closed-source models (e.g., GPT-4 and
Claude) generate overly verbose definitions,
including redundant contextual information
and multiple interpretations.

* These models tend to overemphasize deriva-
tive or secondary meanings, resulting in broad,
general definitions that deviate from the core
semantic meaning.

* Models trained on general corpora often strug-
gle with uncommon word usages due to lim-
ited training examples, leading to inaccurate
definitions or contextual misinterpretation.

This comparison demonstrates the superiority of
LM-Lexicon-MoE’s targeted, controlled approach
over general-purpose language models for defini-
tion modeling.

F Code for " LM-LEXICON

We use the Alg. 2 and 3 provided below to train
LM-LEXICON-MOE on the 3D-EX and the other

four legacy datasets used in this paper. We exposed
this Pytorch-style code as an implementation to
extend our method to any potential domain. Ad-
ditionally, to illustrate the differences and novelty
of our method, we provide a comparison with the
relative methods as shown in Table 11.



Model Generated Definition

Claude-3-Opus The phrase gone coon means someone who is certainly defeated
or about to die.

Gemini-1.5-Pro The word “coon” is a deeply offensive racial slur targeting people
of African descent. It has a long and painful history rooted in
racist caricatures and stereotypes. While it once appeared casually
in entertainment and everyday language, it is now considered
completely unacceptable to use.

GPT-4-Turbo “Coon” is a colloquial abbreviation for “raccoon,” a nocturnal
mammal native to North America. “Coon” was sometimes used to
refer to a person who is in deep trouble or doomed, often in the
phrase “a gone coon,” meaning someone who is as good as dead
or has no chance of survival.

a LM-Lexicon-Dense (Ours) A person who is afraid

a LM-Lexicon-MoE (Ours) A person who is deemed to be despicable or contemptible

Table 10: Comparison of generated definition by models.

MOE (2017) BTM (2022) BTX (2024) o LM-LEXICON
(Vanilla) (Merge) (Linear router) (Ours)
{ Dense experts are
trained independently (upcycling) X v v
<> Experts are specialized
in different domains X v v
<> Experts are chosep by v X v v
a learned router per input token
(<j> Adaptive router via X X " v
omain-wise routing
¢ Semantic experts X X X v

adapted to diverse domains

Table 11: A comprehensive comparison of the most relative sparse mixture-of-experts frameworks in recent years,
including MoE (Vanilla), BTM (Merge), BTX (Linear Router), and LM-LEXICON. Our method demonstrates
advancements in semantic-centric specialized expert and adaptability across domains.



Algorithm 2 Pytorch code for semantic experts merger.

def merge_semantic_experts(experts, router_layers):

nnn

Merge expert models into a unified model.

Args:

- experts (ModulelList): Experts to merge.

- router_layers (ModulelList): Router layers.
Returns:

- state_dict (Dict[str, Tensor]): Merged model weights.

nnn

state_dict = dict()
expert_nums = len(experts)
count_total_router_layers = @

for idx, expert in enumerate(experts):
# load each expert model
model_id = expert["model_id"]
model = load_base_model (model_id)

if hasattr(model, "_tied_weights_keys"):
tied_weights_keys.extend(model._tied_weights_keys)
count_router_layers = @
count_averaged_layers = 0

# iterate over all the layers of the model
for layer_name, param in model.state_dict().items():
is_merge_layer = True
for router_layer in router_layers:
if is_layer_suitable_for_router(router_layer, layer_name):
is_merge_layer = False
wb = layer_name.split("”.")[-1]
new_layer_name = layer_name.split(f"{wb}")[@]
new_layer_name = f"{new_layer_name}experts.{ix}.{wb}"
assert new_layer_name not in state_dict
state_dict[new_layer_name] = param
count_total_router_layers += 1
count_router_layers += 1

if is_merge_layer:
# average the rest of layers by mean of weights
prev_weight = state_dict.get(layer_name)

if prev_weight is None:
prev_weight = torch.tensor(0)

else:
if not prev_weight.shape == param.shape:
# adjust the shape of weight
prev_weight, param = shape_adjuster(
prev_weight, param, idx
)
try:

# sometimes data is empty / non weights

state_dict[layer_name] = prev_weight + (param / expert_nums)
except Exception as _

print(layer_name, param)
state_dict[layer_name] = param
count_averaged_layers += 1

return state_dict




Algorithm 3 Pytorch code for modeling LM-LEXICON-MOE Layer

class SemanticMoelLayer(nn.Module):
def __init__(

self,
in_features: int,
out_features: int,
bias: bool,
num_experts: int,
num_experts_per_tok: int = 2,
routing_policy: str,

):
"""Semantic Mixture-of-Experts Layer.
Args:
- in_features (int): Input Features
- out_features (int): Output Features
- bias (bool): Use bias or not.
- num_experts (int): Total numbers of experts that Router Layer would handle
- num_experts_per_tok (int): Number of active experts per token.
- routing_policy (str): Routing Policy.
super().__init__Q)
self.routing_policy = routing_policy
if routing_policy == "token-level":
# top-k token-level routing
self.gate = nn.Linear(in_features, num_experts, bias=False)
self.experts = nn.ModulelList(
[nn.Linear(in_features, out_features, bias) for _ in range(num_experts)]
self.num_experts_per_tok = num_experts_per_tok
self.in_features = in_features
self.out_features = out_features
elif routing_policy in ["soft-sequence-level”, "hard-sequence-level”]:
# soft/hard sequence-level routing
self.gate = nn.Linear(in_features, num_experts, bias=False)
self.num_experts = num_experts
self.experts = nn.ModulelList(
[nn.Linear(in_features, out_features) for _ in range(num_experts)]
elif routing_policy == "domain-level":
# domain-level routing
self.gate = nn.Linear(in_features, num_experts, bias=False)
self.num_experts = num_experts
self.experts = nn.ModulelList(
[nn.Linear(in_features, out_features) for _ in range(num_experts)]
)
def forward(self, inputs: torch.Tensor, domain_labels: torch.Tensor):
if self.routing_policy == "token-level”:

gate_logits = self.gate(inputs)
weights, selected_experts = torch.topk(
gate_logits, self.num_experts_per_tok

weights = F.softmax(weights, dim=2, dtype=torch.float).to(inputs.dtype)
results = torch.zeros(
(inputs.shape[@], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

# continue this table as below ...




# continue the above table ...

weights = weights.to(inputs.device)
for ix, expert in enumerate(self.experts):
batch_idx, tok_idx, expert_idx = torch.where(selected_experts == ix)
results[batch_idx, tok_idx] += expert(
inputs[batch_idx, tok_idx]
) * weights[batch_idx, tok_idx, expert_idx].unsqueeze(-1)
elif self.routing_policy == "soft-sequence-level”:
# soft sequence-level routing
gate_logits = self.gate(inputs)
gate_logits_mean = gate_logits.mean(dim=1)
weights = F.softmax(gate_logits_mean, dim=-1)
results = torch.zeros(
(inputs.shape[@], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

for ix, expert in enumerate(self.experts):
results += expert(inputs) * weights[:, ixJ.unsqueeze(-1)
elif self.routing_policy == "hard-sequence-level”:
# hard sequence-level routing (only one selected expert is responsible for the
entire sequence)
gate_logits = self.gate(inputs)
gate_logits_mean = gate_logits.mean(dim=1)
_, selected_experts = torch.topk(gate_logits_mean, 1)
results = torch.zeros(
(inputs.shape[@], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

for ix, expert in enumerate(self.experts):

results += expert(inputs) * (selected_experts == ix).float().unsqueeze(
-1
elif self.routing_policy == "domain-level”:
# domain-level routing (only one selected expert is responsible for the entire
sequence)

gate_logits = self.gate(inputs)

results = torch.zeros(
(inputs.shape[@], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

for ix, expert in enumerate(self.experts):
results += expert(inputs) * (domain_labels == ix).float().unsqueeze(-1)

return results




Computing Infrastructure
8 x H100-80GB GPU (PCle)

Hyperparameter

Assignment

Hyperparameter

Assignment

Base model

Training strategy
Epochs

Global batch size
Max sequence length
Max learning rate
Optimizer

Adam beta weights
Learning rate schedule
Weight decay
Warm-up ratio
Gradient clipping
Global dropout
Random seeds

LM-Lexicon-Dense
(Llama-3-8B)
DS ZERO-3

3

524,288 tokens
128

5e — 6

AdamW
0.9,0.95

Cosine decay to 0
0.01

10%

1.0

0.1

{21,42,84}

Base model

Training strategy
Epochs

Global batch size
Max sequence length
Max learning rate
Optimizer

Adam beta weights
Learning rate schedule
Weight decay
Warm-up ratio
Gradient clipping
Global dropout
Random seeds

LM-Lexicon-MoE
(4 x Llama-3-8B)
NAIVE PP

1

131,072 tokens
128

le—6
AdamW
0.9,0.95
Cosine decay to 0
0.01

10%

1.0

0.1

{21, 42,84}

Table 12: Hyper-parameters of LM-LEXICON-DENSE and LM-LEXICON-MOE training. DS ZERO-3 (left-hand
table) denotes stage-3 ZeRO parallelism implemented by DeepSpeed (Rajbhandari et al., 2020). NAIVE PP (right-
hand table) denotes naive pipeline parallelism implemented by (¥ Hugging Face Transformers (Wolf et al., 2020).



Definition Modeling Evaluation Guideline

Task: Evaluate definitions generated by LMs using the 5 criteria below. Rate each criterion independently on a 1-5 scale.

Evaluation Criteria (1-5 Scale)

1. Accuracy

Completely Mostly Partially Mostly Perfect
incorrect inaccurate accurate accurate accuracy

3. Conciseness

Extremely .
Too verbose or  Somewhat : Optimally
worg%;rl; ico brief verbose sy caneie concise

5. Grammar & Fluency

Perfect
grammar

Severe errors  Multiple errors  Some errors Minor issues

Examples

Photosynthesis
"The process by which plants convert light energy into energy."
"f{context}}"

Acc Clar Conc Cont Gram
5 5 5 4 5
Process

1. Read the target word carefully

2. Read the generated definition thoroughly
3. Rate each criterion independently (1-5)
4. Provide brief justification (optional)

5. Submit complete evaluation

2. Clarity
q Somewhat Clear, minor
Incomprehensible Mostly unclear e T Crystal clear

4. Context Appropriateness

Ignores Minimal . Perfect
e — e — Basic context ~ Good context e
Resilient

"Able to quickly recover from difficulties and adapt to change."”
"{{context}}"

Acc Clar Conc Cont Gram

5 5 5 4 5

Figure 12: Human evaluation guideline.
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